美陆军新任计划执行官谈“泰坦”计划及联合全域指挥控制(英文)

2020-06-10 智邦网

编译 致远

据c4isrnet网2020年6月9日报道,一年来,陆军准将罗伯·柯林斯任情报、电子战与传感器 (IEW&S)计划执行官,提高士兵发现、识别确认别敌人的能力。

业务包括机载和地面传感器、定位、导航和计时设备,生物测定解决方案,以及“泰坦地面站计划”,负责从空中、地面和空间传感器获取数据,向射手分发基本数据。

6月1日,柯林斯正式接任陆军指挥、控制与通信(战术)计划执行官办公室主任一职,负责陆军网络现代化建设,与陆军未来司令部网络跨职能小组协同工作。

5月,他接受C4ISRNET采访,谈陆军联合全域指挥控制问题。

What the Army’s TITAN program means to multidomain operations

For a little more than one year, Brig. Gen. Rob Collins served as the program executive officer for Intelligence, Electronic Warfare and Sensors (IEW&S), where he was responsible for ensuring the soldier can detect, recognize and identify the enemy.

Collins’ vast portfolio included airborne and terrestrial sensors, position, navigation and timing devices, biometric solutions, and the TITAN ground station program, which will take data from aerial, terrestrial and space sensors to distribute essential data to shooters.

The officer has a long career working in this arena: he previously served as project manager for the Army’s Distributed Common Ground System and before that as product manager for the Warfighter Information Network-Tactical (WIN-T) Increments 2 and 3.

On June 1, Collins officially took over as the new head of the Army’s Program Executive Office – Command, Control and Communications (Tactical) where he will oversee the Army’s network modernization efforts and work with the network cross functional team at Army Futures Command.

In May, during his final days at PEO IEW&S, Collins talked to C4ISRNET’s Nathan Strout about his approach to acquisitions, how the Army fits into Joint All Domain Command and Control, and the legacy he’ll leave at the program office.

This interview has been edited for clarity and length.

C4ISRNET: How has your office helped the Department of Defense’s shape its approach to Joint All Domain Command and Control?

COLLINS: Enhancing deep sense and linking sensor to shooter is fundamental to our Army multi-domain operations concept, and really, the future of large-scale ground combat operations. And specifically for our PEO, we’ve been active partners in JADC2 efforts, working closely with our network (cross functional team) and our PEO C3T partners and the Assured Position Navigation and Timing cross functional-team in particular and the ISR task force at large, which is led by the G2.

We’re working on integrated architectures, multi-functional sensors that are integrated within the network for both [data] transport and mission command, and really solutions that are tailored to meet the unique requirements of our Army ground force. And when I say that, [I meant that they are] really at scale and they can meet the mobility requirements of our ground force. We operate at a scale and at an expeditionary mobile fashion which makes the Army a little bit unique. I’ll tell you the collaborations that we’ve embarked upon with the [program officers] really assisted in some common design principles and components to assist in interoperability and really enabling sensor to shooter.

Most recently within the PEO, we really helped the Army with some deep sensing ground stations — TITAN circuits if you will — that participated in some sensor to shooter threads in a training exercise [outside the continental United States]. So that really informed our approach. Across the PEO moving forward we’ve identified a lot of collaborative areas for experimentation demonstrations, tech maturity and really focused in on sensor integration and really data — how do we share data best across the battlefield?

C4ISRNET: From the outside, it seems like TITAN will be an essential piece to the entire JADC2 concept, especially for the Army. How are you approaching redundancy and survivability to that system?

COLLINS: TITAN is certainly a significant focus area in the modernization effort. It’s a key component for our deep sense capability and really being scalable and expeditionary as an intelligence ground station and supporting commanders across the multi-domain operations battlefield framework. And we’re really looking at TITAN to be kind of a LEGO approach that can be tailored based on the echelon it supports.

And yes, one of the tenets is that it’s going to leverage a multi-layered approach, a robust set of nodes from space, from high-altitude aerial to terrestrial sensors and assist with target nominations and link fires, command and control, informed by all the multi-disciplines of intelligence. And really as it connects all these various feeds, hundreds of thousands of intelligence feeds, it’s going to employ artificial intelligence and machine learning to rapidly synthesize that information into meaningful info at the speed of battle —sometimes what we say is time can almost become a weapon in and by itself.

Part of the analysis is taking a look at primary and alternate communications, what we call PACE, as part of the design, and I’ll tell you TITAN is going to consist of a number of assured communications capabilities designed in the PACE plan, from Beyond Line-of-Sight communications, common tactical network components, direct downlinks, software-defined radios, and other IT and non-IP options that really span the gambit of the security domain. So we understand the criticality of PACE and it’s one of these that we’ll work closely with our network and APNT CFT partners as we continue to refine and define the concept.

C4ISRNET: Speaking more broadly, a key function of JADC2 is being able to network with the other services and pull in their information to your shooters. When you look to the other services, what are the platforms, networks, or developments that you’re excited to see feed into TITAN and other Army systems?

COLLINS: We’re always looking for opportunities to leverage national and other mission partner information, and that can span a number of sense capabilities, certainly within space. We certainly watch all things that are going on within low Earth orbit, capabilities that will provide a lot of opportunity. Across the joint force there are a number of areas — certainly within the Air Force — that have the ability to do deep sense with aerial platforms at altitude, so we watch that closely. And I would just tell you, even in the commercial arena even as far as the geospatial information there is a lot of collect capability.

TITAN is really adopting an open systems architecture kind of baked in from the beginning [where it can take data from multiple sources], whether it’s a [science and technology] effort — which could come from the Army or another agency — for intelligence warning capability or detect/assess/decide-type capability, or if it’s leveraging a mission or national partner capability as I mentioned for deep sense, or really even adopting a commercial capability like geospatial collect or adopting a high performance data platform.

C4ISRNET: Leaders at the Space Development Agency frequently note that the Army is the biggest customers for data collected from space. Can you speak a little bit about how you’re looking at their architecture and tying into their transport layer?

COLLINS: At least on the ISR side, we work closely with many of our partners as we look at opportunities to be able to leverage investments that they’re making into the space sense capability, and certainly some of the things we have to be conscious of are the responsiveness to our tactical command. If they have intelligence requirements [we need to be able] to provide those back so we can get the persistent stare or the on demand access that we need for the tactical war fight.

We certainly are also aware as we push that information down, some of the impacts that it may have on the Army networks that often operate on disconnected, intermittent, limited bandwidth environments, so to the extent that we can do processing as far forward at the point of collect and sense so we can only distribute the information that’s absolutely necessary, we’re working those concepts to do that. And that’s where the artificial intelligence and machine learning comes into play.

C4ISRNET: How have acquisitions changed over the last few years? From the outside we’ve seen a lot more usage of Other Transaction Authorities across the Department. What is your thinking on OTAs and other acquisition vehicles?

COLLINS: We have really adapted our acquisitions — now more than ever — using more agile and more tailored acquisition approaches. Each endeavor, each capability that we go to pursue, often has a unique set of circumstances such as the technology maturity, the types of requirements, the types of things that we need to integrate—even our intellectual property approaches. Now more than ever, we’ve got multiple pathways on the acquisition approach that we can pursue: tailoring traditional, pursuing mid-tier, there’s now software pathways, and there’s always quick reaction and engineering change proposals to existing programs.

So there’s a number of different approaches, and I would tell you, too, our ability to involve soldiers in the operational feedback and operational perspective in the process is also kind of new and something that we’ve really underscored as part of the process. That starts not only from the requirements process, but how we include them in our source selection to assessing soldiers’ hands-on kit and providing that feedback.

OTA is just another tool that we have at our disposal. Certainly, if we need to do a little bit more maturation of prototypes prior to finalizing requirements, the OTA does offer an opportunity to more quickly pursue those prototypes in advance of transitioning into a more traditional FAR-type approach. I think there’s a lot of flexibility and we’re starting to do our critical thinking to decide how we approach each acquisition, because each acquisition and capability is unique.

I’ll tell you the other thing that we’re really doing too is—where appropriate—exercising a DevOps or DevSecOps type of approach, and really that’s where you bring material developer, combat developer, user, interoperability certifier, tester, and even to the extent the accrediter for those approaches, and they’re all collectively together so you do things in parallel and you can dramatically speed up the process.

Those are a number of things that we are really using at our disposal to move both more rapidly but also more efficiently and effectively.

C4ISRNET: How do you incorporate smaller, nontraditional vendors that can bring in solutions? How do you bring more people into the fold, especially in tech hubs like Silicon Valley?

COLLINS: We’ve got a lot of footprints in a lot of these technical hubs … I would tell you that we’ve also done a tremendous amount of industry outreach even within the portfolio. I think in my tenure, in about a year I’ve probably done close to almost 200 industry engagements, and that spans from small, medium and large. And we’re continuously trying to encourage and build relationships beyond just the traditionals. It is probably one of the advantages of the OTA that we’ve got, to be able to attract non-traditionals. I think there’s other opportunities that we’ve got within Small Business Innovative Research-type initiatives that we’ve pursued, and then also CRADAs, the Cooperative Research and Development (Agreements). So we kind of span the gamut of that and I’ll tell you we’ve got a pretty healthy teaming relationship between us and the [cross functional teams] to be able to get out there and attract that type of non-traditionals that really have a lot of the innovative and forward thinking ideas that we want to bring into our Army.

C4ISRNET: We know a lot of the programs at places like PEO IEW&S take years to develop, with multiple PEOs overseeing and influencing different platforms. As you finish out your tenure, what are the milestones, programs you’re proud of?

COLLINS: First and foremost, I’ll depart extremely proud of the people and the mission that the PEO IEW&S portfolio has accomplished and continues to accomplish. I’ll tell you one of the unique things about our portfolio is about 50 percent of our programs support overseas operations, and so we do a significant amount of investment of things that are going on abroad. Much of our Army is deployed and so for that I’m extremely proud.

I’ll tell you the other thing — I think we have established a healthy culture that is ready, that is resilient and adaptive to change. And I think that has certainly been one thing that I’ll be proud of, that I think will be a lasting legacy within the organization. We kind of walked in focused on a couple basic attributes. First and foremost, people and leadership was one. Two, exercising acquisition discipline. Three, integrating our kits so it can collectively operate and inform on the battlefield. And then four, really working with our partners and stakeholders. I think in each one of those areas we’ve made tremendous progress and really established a lot of momentum.

Some of the major programmatics moving forward … the Terrestrial Layer System, I think we’ve made some good progress there. Missile Defense and Space Systems set the conditions for our future aerial deep sense capability and really tightened kind of the major deep collect and nesting in with a lot of collecting in space and with our national mission partners. And then all of that data coming down to the foundational component are probably some of the big areas where we’ve established a lot of positive, irreversible momentum that will allow us to move forward on our Army modernization front.

C4ISRNET: And as you move over to PEO C3T, what are you excited to tackle there and what lessons will you bring with you from PEO IEW&S?

COLLINS: Well, I must admit that I am a signal officer and so I am excited to return to my roots as a network professional. And so I do find very much the network (to be) an exciting endeavor, and so I’m looking forward to getting back and contributing with the team.

And I think what I would certainly take with me is that … I have a better appreciation of the types of information, the types of data, the types of intelligence … that need to traverse our networks, the type of demands that it puts on the network, the types of speed of service and quality of service and performance that are required to support those users of the network.

So I think that’s one of the key things that I’ll take with me as I get ready to move over and be part of the C3T team, which I’m very excited (about). I’ve been very thankful for the experience here at the IEW&S team— a phenomenal group of professionals — and I’m excited to continue my Army mission.


相关信息

俄先期研究基金会完成“萨尔玛”无人潜航器设计开发(英文)

美特战司令部打造6亿美元最大规模全球数据分析平台(英文)

美特战司令部推进现代化战略四大重点工作(英文)

萨博公司为AMV 8×8军用车装备新一代电子视频及 C4I 系统(英文)

视频:美陆军利用数字化研发新装甲车 士兵可“试驾”虚拟样车

美国防部提出最新5G实验频谱共享关键目标(英文)

英国BAE系统公司将为DARPA Squad X项目提供自主功能

美国政府问责局:美国防部网络安全缺乏整体规划(英文)

美特种作战司令部不断拓展航天业务(英文)

英国陆军成立第一个专业网络作战部队“第十三信号团”(英文)

美特战司令部设立专职机构加强软件与AI开发(英文)

美国会问责局:美福特号航母存在重大技术问题(英文)

欧防局推出智能化通用开放士兵作战体系架构(英文)

美国防部新增7个5G试验靶场基地  总数增至12个(英文)